If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(x^2-1)=0
We multiply parentheses
10x^2-10=0
a = 10; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·10·(-10)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*10}=\frac{-20}{20} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*10}=\frac{20}{20} =1 $
| a+2a+2a+5=100 | | 54+180=y | | 11x^2-6-2(x^2+4)=2 | | 3a−7=11 | | 1/x^2=4/12^2-x^2 | | 80/x+1=25 | | (160-x)/2=51 | | -5(x+5)+25=-5 | | 80+x/x=25 | | 10+3x=15+2x | | (2x-24)+(x-2)=180 | | 59+92=z | | z+59=92 | | (2x+3)(5x–4)=0. | | z+92+59=92 | | -3(x-1)+5x=6(x-2)+3 | | x²+3x=-2,25 | | x+59+43=92 | | -2(x-4)=-(5x-5) | | z+43+49=92 | | 2(x-7)=5x-2 | | 5+7y=-5-3y | | 2x-6x+5=-3x-6+7 | | 3x-14x=2341 | | 3x+91x=2123x | | -5x+8=3x-8 | | x+59+43=180 | | (2x-24)+(x-2)=x | | 1.5b=15 | | 6n−3=57 | | 7x-5=10x+7 | | 2y^2+6y-360=0 |